患者案例故事
更多三位女科学家联手,用AI算法将乳腺癌的筛查速度提高了100倍
近美国癌症协会一份报告预计,美国今年约有40000名女性死于乳腺癌。造成该结果的原因之一,是诊断癌症肿瘤所需的时间太长——对此,研究人员们一直强调改进癌症的检测和预防,如果疾病在治愈率较高的早期阶段就被发现,往往能挽救更多生命。
现在,一个由麻省理工学院计算机科学与人工智能实验室(MIT’s Computer Science and Artificial Intelligence Laboratory,CSAIL)、马萨诸塞州总医院(Massachusetts General Hospital)和哈佛医学院(Harvard Medical School)科学家们组成的团队认为,AI技术可以解决这个难题。
从左至右:马萨诸塞州总医院乳腺成像研究项目主任Manisha Bahl,麻省理工学院教授Regina Barzilay,哈佛医学院教授及马萨诸塞州总医院放射科的乳腺成像科主任Constance Lehman
用AI排查乳腺癌,可以避免手术“一刀切”
目前,乳腺X射线检查(Mammograms)是乳腺癌的佳诊断工具——从X光片上看到可疑的病变组织之后,需要对患者进行针刺活检以检测是否患癌。
然而,这一工具总会存在风险,譬如误诊。当尝试提高可以识别的癌症数量时,“假阳性”的结果也会增加,导致患者进行不必要的活检和手术。
也就是说,“假阳性”的一个常见原因是所谓的“高风险”病变,当通过针刺活检进行测试时,这些病变在乳腺X射线照片上看起来很可疑,并且具有异常细胞。这种情况下,医生通常采取不同的措施:有些医生对所有的”高危病变“都进行手术去除,有些则对“较高癌症发生率的病变”进行手术,例如“非典型乳管增生”(ADH)或“小叶原位癌”(LCIS)。
种方法要求患者经历痛苦、耗时且昂贵的手术,甚至有些手术毫无必要;种方法也存在不精确的情况,可能导致ADH和LCIS以外的“高风险病变”成为漏网之“癌”。
图:乳腺X射线检查仪
那么如何避免不必要的手术,同时仍然保持乳腺X射线检查的重要作用?
开篇所提到的三位女科学家团队,联手开发了一套机器学习模型,被称为“随机森林分类器(random-forest classifier)”的方法,并让它接受了600个高风险病灶的分析训练。
在综合了家族遗传史、人口统计、以及过往的组织活检和病理报告等信息之后,该模型对 335 个病灶(终升级为癌症的病患)进行了测试,结果准确诊断了97%的乳腺癌是恶性肿瘤,而传统方法仅为79%。
这项研究的结论是:在将该机器学习模型引入常规诊断实践后,超过30%的良性病灶切除术是可以避免的。
同时。该技术的工作速度比乳腺X射线检查快30倍——据估计,医生需要50-70个小时来分析50名乳腺癌患者,而该技术只需要约30分钟,相当于提高了100倍。
图:数字化乳腺X射线检查
这一系统或许能替代传统的乳腺X射线片子,帮助女性做出明智的决定,采取好的治疗方法。
Regina Barzilay是麻省理工学院电子工程与计算机科学教授,同时也是一名乳腺癌幸存者,她认:“当数据有这么多的不确定性时,机器学习就是我们需要的、用于改进检测和防止过度治疗的工具,这是一个趋势。”
哈佛医学院教授及马萨诸塞州总医院放射科的乳腺成像科主任Constance Lehman是这个项目的参与者之一。她强调,“据我们所知,这是个将机器学习应用于区分需要进行手术的高风险病变和不需要进行手术的高风险病变的研究。”
Lehman介绍,过去,医生可能会建议所有高风险的病变都要进行手术切除。但现在,如果该模型确定病变对特定患者来说的癌变机率很低,我们可以与病人就她的选择采取更有针对性的医疗方法。
她还透露,马萨诸塞州总医院放射科的医生将从明年开始将该模型纳入其临床实践。
马萨诸塞州总医院乳腺成像研究项目主任Manisha Bahl也支持这种看法,她表示,她们的目标是在临床环境中应用该工具。未来,他们希望将乳腺X射线照片、病理幻灯片图像( images of the pathology slides)、以及医疗记录中更广泛的患者信息结合,从而将该模型发展成为适用于其他类型的癌症甚至完全是其他类型的疾病。
Debashish Ghosh则认为,尽管人工智能技术很强,但是更适合美国而不是英国,因为统计显示在英国只有不到5%的患者接受了乳腺癌手术,而在美国这一比例是30%,说明英国患者本就有自己的选择。
有关这项研究的详情,已经发表在近日出版的《放射学》(Radiology)期刊上。
*未经许可,禁止转载
女科学家 乳腺癌 算法
为国内客户提供美国专家会诊、赴美就医、高端体检、精准医疗、医护培训等一站式海外医疗咨询服务出国看病/远程会诊费用、流程,“扫一扫”了解更多!
点击立即咨询